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Abstract

The Unit Commitment Problem (UCP) is a computational bottleneck
in electrical grid optimization. The problem bears a close resemblance to
a similar problem in High Performance Computing: the Dynamic Volt-
age/Frequency Scheduling (DVFS) problem. In my earlier work I suc-
cessfully tranformed the DVFS into a closely related problem amenable
to a linear programming solution and was thus able to schedule problem
instances several orders of magnitude larger than any that had been at-
tempted before. This technical report details my unsuccessful efforts to
derive a similar transformation for the UCP. The problem proved impos-
sible not because generators were either on or off, but because the state of
an earlier timeslice constrains the states of latter timeslices in ways that
cannot be sufficiently well approximated for useful solutions.

1 Introduction

The general Unit Commitment Problem (hence UCP) requires scheduling re-
sources to meet a specified demand over time. Resources are restricted to being
either on or off. This constraint creates a natural fit for integer programming
formulations. An MILP formulation for UCP will partition the problem into
timeslices and schedule sufficient resources per timeslice while minimizing cost.
Despite extraordinary advances in ILP and MILP solvers this kind of formula-
tion guarantees all but the smallest problems will be intractable.

Dozens of approaches have been formulated since the unit commitment
problem was first formalized [13]. There are two major reviews of this liter-
ature [25,37]. Table 1 illustrates how nearly every novel optimization technique
developed over the past fifty years has eventually been applied to UCP. This
is a testament to both the importance of the problem and the perception that
existing techniques leave significant room for improvement.

In my previous work [32] I was faced with a similar problem: creating an
optimal schedule for binary resources, in this case the selection of discrete CPU
clock frequencies in order to minimize energy consumption during execution
of parallel scientific applications. FEarlier work had treated this as a classic



Table 1: Parameters
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Fuzzy Algorithms [24,35,43]
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[6,
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[

Tabu Algorithms 16,17, 30]
Expert Systems 20,24, 40]
Particle Swarm 6,45]
Unit Period 39]
Evolutionary Algorithms | [10]

integer programming problem: only a single CPU clock frequency could be
used at a time and optimization required selecting the best frequency from the
handful of candidate frequencies supported by the processor. The overhead
due to integer programming precluded using this work for fine-grained MPI
scheduling necessary for massively parallel programs.

I successfully solved this problem by assuming that every CPU clock fre-
quency would be used between MPI communication calls and set up the solver
to determine when execution should begin in each frequency. In this case, time
became my continuous variable. The optimal solutions never required more
than two frequencies to be scheduled for a positive length of time for any task,
and allowing the two frequencies to run one after the other allowed the solution
to approximate what would have been the idea CPU clock frequency in terms
of both execution time and energy consumption.

The transformation was not perfect. Some amount of time and energy had to
be expended in order to change from one frequency to another. If two adjancent
computation tasks were to use the same frequency then this cost would not
accrue. As this was an either/or variable there was no tractable way to represent
it using a linear programming formulation, but the error this introduced was
sufficient small so as to not materially affect our solutions.

In attempting a similar formulation for the UCP I hoped that a linear pro-
gramming approximation could be made to have similarly small error. This was
not to be the case. As I explain more fully below, the state of a generator at a
particular timeslice may be fully determined by the state of that generator at
an earlier timeslice. In contrast, the DVFS problem had been stateless: while
I may have underestimated the cost due to changing CPU clock frequency the
frequency chosen by a particular task was otherwise wholly independent of the
frequency chosen by any task that came before it.

I was able to come up with several tricks compensate for the inability of
the linear programming to cope with binary state, but none of them worked
sufficiently well — even on toy problems — to allow the solution to have any
real-world application. This was the ultimate reason why the project consumed



so much effort: while it was obvious that no linear program could be constructed
that would give exactly the same answer as an integer program, the space of
nearly-equivalent linear programs was quite large. In the remainder of this
technical report I provide several highlights from that space.

2 Overview

My most useful formulation of the UCP trades intuitiveness for simplicity. The
problem defines generators, each of which has a vector of jobs. A job represents a
change in the state of the generators. Jobs are defined by power (in watts), cost
and start times (all jobs run to the end of the time horizon T'). Most generators
will contain jobs with alternating positive and negative watt values. The first
job of a particular generator might have an associated power of 10MW while
the second job has an associated power of —10MW. The start of the second job
indicates the generator has halted, thus the sum of the first two jobs on this
generator anytime after the second job has started is zero.

Load is represented by a single dedicated “generator” generating “negative
watts”. The load curve is represented by a stepwise function where each step is
a job. As this function is an input the start times for jobs on this generator are
known ahead of time. For example, if the initial load is 5SMW and it increases
an hour later to TMW, the first job on the generator will have a start time of
0 and “generate” —5MW and the second job will have a start time of 60 and
“generate” —2MW, thus leading to a total load from this generator of —7TMW
at time ¢ > 60. Decreasing load is represented by the start of a job with positive
watts.

The number of jobs per generator (and their characteristics, except for their
start times) is an input to the problem. An optimal solution might require a
particular generator not to run at all, or to turn on and off a larger number
of times than can be represented given the available number of jobs on that
generator. We address this problem by optimizing for a time window in the
middle of the overall time horizon. Sufficient energy constraints (detailed below)
only apply within this window, and any job execution outside this window does
not accrue any cost. This will allow only the jobs needed for optimal execution
to be scheduled within the window and any unnecessary jobs will be scheduled
to run outside of the window. This does require some care in sizing the window
and time horizon relative to any additional job constraints. In addition, feasible
solutions that require all jobs on a particular generator to be started within the
window may benefit from additional jobs on that generator; a feasible solution
is not proven to be optimal until there are excess jobs on all generators.

Given this system we would like to be able to sum up the contributions
of all jobs whenever a job starts and verify net system power is nonnegative.
Doing this based on power would require representing jobs as either on or off —
something not generally considered possible in an LP. Instead, we ask how long
every job has been running at a particular point in time, multiply that time by
the power associated with the job to arrive at the net system energy at that



point in time — a value that should also be nonnegative. While this constraint
is necessary it is also insufficient: a early spike in energy production will be
averaged across the whole time period, leading to a feasible but nonsensical
solution. Instead, we need to constraint the solution so that net system energy
between any two adjacent points in time is nonnegative.

These two operations — calculating how long a job has been running and
finding net energy between two points in time — is complicated by the fact that
jobs are not ordered across generators. The operation we would like to have is
maz: for two points in time a and b define §(a,b) as max(a — b,0). As max is
not a linear function, we instead put a floor on the desired value:

6(a,b) >a—10
6(a,b) >0

Given this, the difficultly then becomes putting an effective ceiling on §(a, b).

3 Basic Formulation

Let there be a set of generators G' and let generator g € G consist of N, jobs.
Next, for g € G let g; be the ith job on generator g (with 1 <1i < Ny). For g € G;
t€l...N;,—1in=N,:

9g1=0 (1)
In = T (2)
9i < git1 (3)

These respectively constrain the first job on every generator to start at time zero,
the final job on every generator to start at the time horizon T (the maximum
time in the system), and order job start times within a particular generator.

We then define the delta function. Intuitively, d(x,y) is how long job y ex-
ecuted up to the start of job x. Outside of a linear programming environment
this could be expressed as max(z —y, 0), but within an LP this must be approx-
imated using constraints. Within a single generator this is trivial. For g € G,
i, €1...Ng,

gi—g; ifi>j
5(9“‘%):{0 ’ ifi < @)

Across generators we can only fix the floor, as jobs are not ordered across
generators. For g, h € G55 €1...Ngskel...Np:
5(g5, i) > g5 — hi (6)

This establishes a minimum time the kth job on generator h ran between
time ¢ = 0 and the start of the jth job on generator g. However, the sufficient



energy constraint requires knowing how long a job ran between two arbitrary
points. For f,g,h € G;i€1l...Ng;j€l...Nyskel...Ny:

’Y(fwgphk) Z (7)
v(fi, 95, hi) > 0(fi, 95) — 6(fis ha) (8)

In words, v(fi,gj, hx) represents how long a particular job ran between the
interval defined by the starting points of two other jobs: the execution time
of the ith job on generator f between the start of the jth job on generator
g and the start of the kth job on generator h. Given this, we can formulate
the sufficient energy constraint as follows. Given watts W (g;) produced by job
j on generator g (where negative watts on a specified generator stand in for
consumption) and f,g,h € G;j €1...Ng;k€1...Np,

> W fir g )W (fi) > 0 9)

=1

Give a cost function (in dollars, say) for the ith job on generator f as C(f;),
we minimize the objective function

7fz>gjahk (f’L)
Z T (10)

Note that execution occurring between particular g; and h; will be counted
multiple times; the division by j(Np — k) normalizes the result.

4 The Big Problem

In my previous work on DVFS scheduling I used a similar formulation to ap-
proximate the maximum. A given job with backward dependences on other
jobs could not be scheduled to start until all its dependences had completed. 1
represented the start time of this job as greater than or equal to the start time
plus run time of each of its dependences. As the problem bounded the total
time in the system and the objective function used scheduled time as an input,
the calculated start time did not exceed the minimum solution.

UCP differs in one important respect: the max approximation must be ap-
plied at two levels, § and , and the objective function only operates on the
latter. This means that if additional constraints are not able to force ¢ to be
very close to max, the solutions for v may be feasible but useless.

The following place upper bounds on §:



6(g5, he) < g5 (11)
0(gj, hi) <T — hy, (12)
(g5, hue) < 6(5, he+1) (13)
0(gj+1, i) < 9(gj, hi)- (14)

If 6(gj, h) is positive, then d(hy,g;) should be constrained to be zero. If

0(g;, hi) is zero, then 6(hy, g;) may be zero (if g; = hy) or positive.

Additionally, we can “sum the differences” as follows:

Ny-1
Z 0(fi+1.95) = 6(fir9:) =T — gi (15)
=1
Ng—1
> 6(firg5) = 6(firgj1) = fi- (16)
j=1

To the best of my knowledge, these constraints on § are not sufficient to give

useful answers to the UCP, nor are there a set of constraints that exist that
would allow useful answers.
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